3.660 \(\int \frac{\sqrt{d+e x^2}}{(a+b \sinh ^{-1}(c x))^2} \, dx\)

Optimal. Leaf size=24 \[ \text{Unintegrable}\left (\frac{\sqrt{d+e x^2}}{\left (a+b \sinh ^{-1}(c x)\right )^2},x\right ) \]

[Out]

Unintegrable[Sqrt[d + e*x^2]/(a + b*ArcSinh[c*x])^2, x]

________________________________________________________________________________________

Rubi [A]  time = 0.04383, antiderivative size = 0, normalized size of antiderivative = 0., number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0., Rules used = {} \[ \int \frac{\sqrt{d+e x^2}}{\left (a+b \sinh ^{-1}(c x)\right )^2} \, dx \]

Verification is Not applicable to the result.

[In]

Int[Sqrt[d + e*x^2]/(a + b*ArcSinh[c*x])^2,x]

[Out]

Defer[Int][Sqrt[d + e*x^2]/(a + b*ArcSinh[c*x])^2, x]

Rubi steps

\begin{align*} \int \frac{\sqrt{d+e x^2}}{\left (a+b \sinh ^{-1}(c x)\right )^2} \, dx &=\int \frac{\sqrt{d+e x^2}}{\left (a+b \sinh ^{-1}(c x)\right )^2} \, dx\\ \end{align*}

Mathematica [A]  time = 4.41893, size = 0, normalized size = 0. \[ \int \frac{\sqrt{d+e x^2}}{\left (a+b \sinh ^{-1}(c x)\right )^2} \, dx \]

Verification is Not applicable to the result.

[In]

Integrate[Sqrt[d + e*x^2]/(a + b*ArcSinh[c*x])^2,x]

[Out]

Integrate[Sqrt[d + e*x^2]/(a + b*ArcSinh[c*x])^2, x]

________________________________________________________________________________________

Maple [A]  time = 0.209, size = 0, normalized size = 0. \begin{align*} \int{\frac{1}{ \left ( a+b{\it Arcsinh} \left ( cx \right ) \right ) ^{2}}\sqrt{e{x}^{2}+d}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x^2+d)^(1/2)/(a+b*arcsinh(c*x))^2,x)

[Out]

int((e*x^2+d)^(1/2)/(a+b*arcsinh(c*x))^2,x)

________________________________________________________________________________________

Maxima [A]  time = 0., size = 0, normalized size = 0. \begin{align*} -\frac{{\left (c^{2} x^{2} + 1\right )}^{\frac{3}{2}} \sqrt{e x^{2} + d} +{\left (c^{3} x^{3} + c x\right )} \sqrt{e x^{2} + d}}{a b c^{3} x^{2} + \sqrt{c^{2} x^{2} + 1} a b c^{2} x + a b c +{\left (b^{2} c^{3} x^{2} + \sqrt{c^{2} x^{2} + 1} b^{2} c^{2} x + b^{2} c\right )} \log \left (c x + \sqrt{c^{2} x^{2} + 1}\right )} + \int \frac{{\left (2 \, c^{3} e x^{4} + c^{3} d x^{2} - c d\right )}{\left (c^{2} x^{2} + 1\right )} \sqrt{e x^{2} + d} +{\left (4 \, c^{4} e x^{5} + 2 \,{\left (c^{4} d + 2 \, c^{2} e\right )} x^{3} +{\left (c^{2} d + e\right )} x\right )} \sqrt{c^{2} x^{2} + 1} \sqrt{e x^{2} + d} +{\left (2 \, c^{5} e x^{6} +{\left (c^{5} d + 4 \, c^{3} e\right )} x^{4} + 2 \,{\left (c^{3} d + c e\right )} x^{2} + c d\right )} \sqrt{e x^{2} + d}}{a b c^{5} e x^{6} +{\left (c^{5} d + 2 \, c^{3} e\right )} a b x^{4} +{\left (2 \, c^{3} d + c e\right )} a b x^{2} + a b c d +{\left (a b c^{3} e x^{4} + a b c^{3} d x^{2}\right )}{\left (c^{2} x^{2} + 1\right )} +{\left (b^{2} c^{5} e x^{6} +{\left (c^{5} d + 2 \, c^{3} e\right )} b^{2} x^{4} +{\left (2 \, c^{3} d + c e\right )} b^{2} x^{2} + b^{2} c d +{\left (b^{2} c^{3} e x^{4} + b^{2} c^{3} d x^{2}\right )}{\left (c^{2} x^{2} + 1\right )} + 2 \,{\left (b^{2} c^{4} e x^{5} + b^{2} c^{2} d x +{\left (c^{4} d + c^{2} e\right )} b^{2} x^{3}\right )} \sqrt{c^{2} x^{2} + 1}\right )} \log \left (c x + \sqrt{c^{2} x^{2} + 1}\right ) + 2 \,{\left (a b c^{4} e x^{5} + a b c^{2} d x +{\left (c^{4} d + c^{2} e\right )} a b x^{3}\right )} \sqrt{c^{2} x^{2} + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^(1/2)/(a+b*arcsinh(c*x))^2,x, algorithm="maxima")

[Out]

-((c^2*x^2 + 1)^(3/2)*sqrt(e*x^2 + d) + (c^3*x^3 + c*x)*sqrt(e*x^2 + d))/(a*b*c^3*x^2 + sqrt(c^2*x^2 + 1)*a*b*
c^2*x + a*b*c + (b^2*c^3*x^2 + sqrt(c^2*x^2 + 1)*b^2*c^2*x + b^2*c)*log(c*x + sqrt(c^2*x^2 + 1))) + integrate(
((2*c^3*e*x^4 + c^3*d*x^2 - c*d)*(c^2*x^2 + 1)*sqrt(e*x^2 + d) + (4*c^4*e*x^5 + 2*(c^4*d + 2*c^2*e)*x^3 + (c^2
*d + e)*x)*sqrt(c^2*x^2 + 1)*sqrt(e*x^2 + d) + (2*c^5*e*x^6 + (c^5*d + 4*c^3*e)*x^4 + 2*(c^3*d + c*e)*x^2 + c*
d)*sqrt(e*x^2 + d))/(a*b*c^5*e*x^6 + (c^5*d + 2*c^3*e)*a*b*x^4 + (2*c^3*d + c*e)*a*b*x^2 + a*b*c*d + (a*b*c^3*
e*x^4 + a*b*c^3*d*x^2)*(c^2*x^2 + 1) + (b^2*c^5*e*x^6 + (c^5*d + 2*c^3*e)*b^2*x^4 + (2*c^3*d + c*e)*b^2*x^2 +
b^2*c*d + (b^2*c^3*e*x^4 + b^2*c^3*d*x^2)*(c^2*x^2 + 1) + 2*(b^2*c^4*e*x^5 + b^2*c^2*d*x + (c^4*d + c^2*e)*b^2
*x^3)*sqrt(c^2*x^2 + 1))*log(c*x + sqrt(c^2*x^2 + 1)) + 2*(a*b*c^4*e*x^5 + a*b*c^2*d*x + (c^4*d + c^2*e)*a*b*x
^3)*sqrt(c^2*x^2 + 1)), x)

________________________________________________________________________________________

Fricas [A]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{e x^{2} + d}}{b^{2} \operatorname{arsinh}\left (c x\right )^{2} + 2 \, a b \operatorname{arsinh}\left (c x\right ) + a^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^(1/2)/(a+b*arcsinh(c*x))^2,x, algorithm="fricas")

[Out]

integral(sqrt(e*x^2 + d)/(b^2*arcsinh(c*x)^2 + 2*a*b*arcsinh(c*x) + a^2), x)

________________________________________________________________________________________

Sympy [A]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{d + e x^{2}}}{\left (a + b \operatorname{asinh}{\left (c x \right )}\right )^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x**2+d)**(1/2)/(a+b*asinh(c*x))**2,x)

[Out]

Integral(sqrt(d + e*x**2)/(a + b*asinh(c*x))**2, x)

________________________________________________________________________________________

Giac [A]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{e x^{2} + d}}{{\left (b \operatorname{arsinh}\left (c x\right ) + a\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^(1/2)/(a+b*arcsinh(c*x))^2,x, algorithm="giac")

[Out]

integrate(sqrt(e*x^2 + d)/(b*arcsinh(c*x) + a)^2, x)